

BALLAST®

DEMINERALIZED BONE MATRIX IN RESORBABLE MESH SALES BROCHURE

DESIGN RATIONALE

Filled with 100% DBM, Ballast[®] is a highly osteoinductive bone graft for use in posterolateral fusion procedures. DBM is contained within a resorbable mesh pouch that allows for cellular infiltration while restricting graft migration.

GRAFT CONTAINMENT SHOWN TO IMPROVE FUSION IN PRECLINICAL MODELS

Bone graft displacement due to mechanical disturbance during irrigation or from dislodging by paraspinal muscles during closure is a clinical problem in Posterolateral Fusion [Barrow Neurological Institute, Bohl 2018].¹

Potential unintended consequences of migration and/or displacement include:

- Unwanted bone graft in epidural space or neural foramina
- · Reduction in volume of graft that contributes to arthrodesis
- · Fusion at unintended levels
- Non-union

Contained grafts offer a simple procedural solution for Posterolateral Fusion (PLF), providing higher fusion rates, more robust quality of fusion and quantity of bone mass.¹⁻⁵

Graft containment = higher fusion rates

Contained Graft 100%

Uncontained Graft 52%

Uncontained Graft 52%

Uncontained Graft 60%

Fusion results for contained autograft vs. uncontained in rabbit PLF model²

Fusion results for contained autograft vs. uncontained in rat PLF model³

Graft containment = larger fusion mass

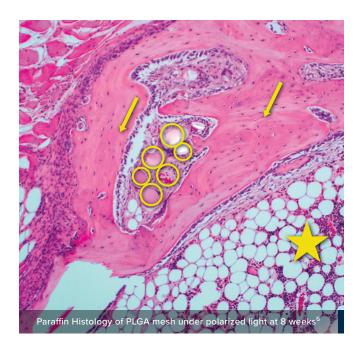
- More robust quality of fusion and quantity of bone mass at 6 months post-op in 5 PLF patients¹
- Significant increase in fusion mass volume in rabbit and rat PLF models³⁻⁵

BALLAST®

POSTEROLATERAL GRAFT SOLUTION

- Delivers a large, consistent volume of graft (6-9cc per level per side)
- Withstands compressive forces of the paraspinal muscles and does not flatten or displace
- Maximizes osteoinductive potential with 100% DBM, within the mesh pouch, in a challenging application
- · Contours around spinal hardware and anatomy
- · Simple to deliver and position in the posterolateral gutters

100% DBM


- No added fillers for maximum DBM content
- DBM chips provide osteoconductive properties and compression resistance
- Every lot tested to confirm osteoinductive potential

RESORBABLE MESH

- Acts as a physical barrier to restrict the migration of DBM
- Mesh pore size allows for unimpeded cellular infiltration
- Biocompatible PLGA material
- Resorbs in approximately 8 weeks

BALLAST®

RESORPTION OF THE BALLAST® MESH POUCH

The resorbable PLGA, poly (lactic-co-glycolic acid), mesh effectively delivers DBM to the graft site, restricts migration, and does not inhibit bone formation. In rat PLF fusion model:⁶

- · PLGA is surrounded by new bone and marrow
- · PLGA did not illicit a negative inflammatory response
- PLGA nearly 100% resorbed

Marrow

New bone

PLGA

Ballast Ordering Information

Part #	Description
02-8000-060	45 x 11mm
02-8000-095	45 x 17.5mm
02-8000-115	85 x 11mm
02-8000-180	85 x 17.5mm
02-8000-160	115 x 11mm

¹Bohl M.A., Xu D.S., Daniels L., et al. The Barrow Innovation Center case series: early clinical experience with novel, low-cost techniques for bone graft containment in the posterolateral fusion bed. *World Neurosurgery* 2018;116:285-95.

²Bawa M., Schimizzi A.L., Leek B., et al. Paraspinal muscle vasculature contributes to posterolateral spinal fusion. *Spine* 2006; 31:891-896.

³Shin D., Yang B.M., Tae G., et al. Enhanced spinal fusion using a biodegradable porous mesh container in a rat posterolateral spinal fusion model. *Spine Journal*. 2014; 14:408-15.

⁴Rao R.D., Bagaria V., Gourab K., et al. Autograft containment in posterolateral spine fusion. *T Spine J.* 2008; 8:563-69.

⁵Poynton A.R., Zheng F., Tomin E., et al. Resorbable posterolateral graft containment in a rabbit spinal fusion model. *J Neurosurg* 2002; 97:460-63.

⁶Walsh W., Jalota S., Oliver R., et al. Preclinical evaluation of a resorbable mesh device containing demineralized bone matrix particles in a rabbit posterolateral fusion model. ©2017 SeaSpine Orthopedics Corporation.

For more information or to place an order, please contact: TEL 866.942.8698 | FAX 877.558.6227 customerservice@seaspine.com | seaspine.com IsoTis OrthoBiologics, Inc.

2 Goodyear, Irvine CA 92618

TEL 800.550.7155 | FAX 800.471.3248 | WEB seaspine.com IsoTis OrthoBiologics, Inc. is a member of the SeaSpine Orthopedics Corporation family of companies.

Made in the U.S.A.

