Posterior Cervical Fixation spinal rendering

Opus BA

Osteoconductive Matrix

Opus™ BA is a synthetic bioactive solution that is easily hydrated and flexible. A carefully selected trifecta of components creates an ideal environment for bone growth building on the earlier generations of synthetic bone grafts.

Gloved hands holding specimen

Highlights

Carbonate Apatite Bone Mineral 50%

  • Higher osteoclastic and osteoblastic activity than β-TCP & HA1
  • Resorption & remodeling similar to human bone2,3

45S5 Bioactive Glass 30%

  • Ideal particle range and size (100-300μm)4,5,6 
  • Ability to stimulate the growth and osteogenic differentiation of osteoblasts7

Type 1 Collagen 20%

  • 100% resorbable8
  • Binds proteins and cells and retains biological factors9

Support Material

Footnotes

  1. Kanayama, K., Sriarj, W., Shimokawa, H., Ohya, K., Doi, Y., Shibutani, T. 2011. Osteoclast and Osteblast Activities on Carbonate Apatite Plates in Cell Cultures. J. Biomaterials, 26, 435-436.
  2. Matsuura, A., Kubo, T., Doi K., Hayashi, K., Morita, K., Yokota, R., Hayashi, H., Hirata, I., Okazaki, M., Akagawa, Y. (2009). Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dental Materials Journal, 28(2), 234-242.
  3. Ellies, LG., Carter, J.M., Natiella, J.R., Featherstone, J.D.B., Nelson, D.G.A. (1988). Quantitative analysis of early in vivo tissue response to synthetic apatite implants. J. of Biomed. Mater. Res., 22, 137-148.
  4. Oonishi, H., Kushitani, S., Yasukawa, E., Iwaki, H., Hench, L.L., Wilson, J., Tsuji, E., Sugihara, T. (1997). Particulate Bioglass Compared With Hydroxyapatite as a Bone Graft Substitute. Clinical OrthoPaedics and Related Research, 334, 316-325, Lippincott-Raven Publishers, Philadelphia, PA.
  5. Schepers, E.J.G., Ducheyne, P. (1997). Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment with several materials and particle sizes and size ranges. Journal of Oral Rehabilitation, 24, 171-181.
  6. Lindfors, N. C., Koski, I., Heikkilä, J. T., Mattila, K. and Aho, A. J. (2010), A prospective randomized 14‐year follow‐up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J. Biomed. Mater. Res., 94B, 157-164. doi:10.1002/jbm.b.31636
  7. Xynos, I.D., Hukkanen, M.V., Batten, J.J., Buttery, L.D.K, Hench, L.L., Polak, J.M. (2000). Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: Implications and applications for bone tissue engineering. Calcif Tissue Int. 67(4), 321-9.
  8. Li, S.T. (2000). Biomedical Engineering Handbook, In JD Bronzino (Eds.), Biologic Biomaterials: Tissue Derived Biomaterials (Collagen) (1st ed.) 2, 42, 1-23, CRC Press, Boca Raton, FL.
  9. Geiger, M., Li, R.H., Friess, W. (2003). Collagen sponges for bone regeneration with rhBMP-2. Science Direct / Elsevier, 55, 1613-1629. http://doi.org/10.1016/j.addr.2003.08.010